1.2MHz Low-Cost,
High-Performance Chargers
k × V IN2
For  optimum  size  and  inductor  current  ripple,  choose
LIR MAX = 0.4, which sets the ripple current to 40% the
charge current and results in a good balance between
inductor size and efficiency. Higher inductor values
decrease the ripple current. Smaller inductor values
save cost but require higher saturation current capabili-
ties and degrade efficiency.
Inductor L1 must have a saturation current rating of at
least the maximum charge current plus 1/2 the ripple
current ( Δ IL):
I SAT = I CHG + (1/2) Δ IL
The ripple current is determined by:
Δ IL =
4 L
Input Capacitor Selection
The input capacitor must meet the ripple current
requirement (I RMS ) imposed by the switching currents.
Nontantalum chemistries (ceramic, aluminum, or
OS-CON) are preferred due to their resilience to power-
up and surge currents:
Choose k CAP-BIAS is a derating factor of 2 for typical 25V-
rated ceramic capacitors.
For f SW = 800kHz, I RIPPLE = 1A, and to get Δ V BATT =
70mV, choose C OUT as 4.7μF.
If the internal resistance of battery is close to the ESR of
the output capacitor, the voltage ripple is shared with
the battery and is less than calculated.
Applications Information
Setting Input Current Limit
The input current limit should be set based on the cur-
rent capability of the AC adapter and the tolerance of
the input current limit. The upper limit of the input cur-
rent threshold should never exceed the adapter’s mini-
mum available output current. For example, if the
adapter’s output current rating is 5A ± 10%, the input
current limit should be selected so that its upper limit is
less than 5A × 0.9 = 4.5A. Since the input current-limit
accuracy of the MAX17005/MAX17006/MAX17015 is
± 3%, the typical value of the input current limit should
be set at 4.5A/1.03 ≈ 4.36A. The lower limit for input
current must also be considered. For chargers at the
BATT × ( V DCIN BATT )
? ?
? V ? V
I RMS = I CHG × ?
V DCIN
?
?
? ?
low end of the spec, the input current limit for this
example could be 4.36A × 0.95 or approximately 4.14A.
Layout and Bypassing
The input capacitors should be sized so that the tem-
perature rise due to ripple current in continuous con-
duction does not exceed approximately 10 ° C. The
maximum ripple current occurs at 50% duty factor or
V DCIN = 2 x V BATT , which equates to 0.5 x I CHG . If the
application of interest does not achieve the maximum
value, size the input capacitors according to the worst-
case conditions.
Output Capacitor Selection
The output capacitor absorbs the inductor ripple cur-
rent and must tolerate the surge current delivered from
the battery when it is initially plugged into the charger.
As such, both capacitance and ESR are important
parameters in specifying the output capacitor as a filter
and to ensure the stability of the DC-to-DC converter
(see the Compensation section.) Beyond the stability
requirements, it is often sufficient to make sure that the
output capacitor’s ESR is much lower than the battery’s
ESR. Either tantalum or ceramic capacitors can be
used on the output. Ceramic devices are preferable
because of their good voltage ratings and resilience to
surge currents. Choose the output capacitor based on:
Bypass DCIN with a 0.1μF ceramic to ground (Figure 1).
N1 and N2 protect the MAX17005/MAX17006/
MAX17015 when the DC power source input is reversed.
Bypass V AA , CSSP, and LDO as shown in Figure 1.
Good PCB layout is required to achieve specified noise
immunity, efficiency, and stable performance. The PCB
layout designer must be given explicit instructions—
preferably, a sketch showing the placement of the
power switching components and high current routing.
Refer to the PCB layout in the MAX17005/MAX17006/
MAX17015 evaluation kit for examples. A ground plane
is essential for optimum performance. In most applica-
tions, the circuit is located on a multilayer board, and
full use of the four or more copper layers is recom-
mended. Use the top layer for high-current connec-
tions, the bottom layer for quiet connections, and the
inner layers for an uninterrupted ground plane.
Use the following step-by-step guide:
1) Place the high-power connections first, with their
grounds adjacent:
a) Minimize the current-sense resistor trace lengths,
and ensure accurate current sensing with Kelvin
C OUT =
I RIPPLE
f SW × 8 × Δ V BATT
× k CAP ? BIAS
connections.
b) Minimize ground trace lengths in the high-current
paths.
20
______________________________________________________________________________________
相关PDF资料
MAX17021EVKIT+ EVAL KIT FOR MAX17021
MAX1702EVKIT EVAL KIT FOR MAX1702
MAX17710EVKIT# RD ENERGY HARVESTING
MAX19000EVKIT+ EVAL KIT MAX19000
MAX19710EVKIT+ EVAL KIT FOR MAX19710
MAX1978EVKIT EVAL KIT MAX1978
MAX3100EVKIT+ KIT EVAL FOR MAX3100
MAX3160EEVKIT+ EVAL KIT FOR MAX3160E
相关代理商/技术参数
MAX17016ETL+ 功能描述:DC/DC 开关控制器 Quick-PWM Step-Down Controller RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
MAX17016ETL+T 功能描述:DC/DC 开关控制器 Quick-PWM Step-Down Controller RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
MAX17016EVKIT+ 功能描述:电源管理IC开发工具 MAX17016 Eval Kit RoHS:否 制造商:Maxim Integrated 产品:Evaluation Kits 类型:Battery Management 工具用于评估:MAX17710GB 输入电压: 输出电压:1.8 V
MAX17017DEVKIT+ 功能描述:电源管理IC开发工具 MAX17017D Eval Kit RoHS:否 制造商:Maxim Integrated 产品:Evaluation Kits 类型:Battery Management 工具用于评估:MAX17710GB 输入电压: 输出电压:1.8 V
MAX17017GTM+ 功能描述:DC/DC 开关控制器 Quad-Output Controller RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
MAX17017GTM+T 功能描述:DC/DC 开关控制器 Quad-Output Controller RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
MAX17018BAGL/VY+T 制造商:Maxim Integrated Products 功能描述:SIDE-WETTABLE DUAL STEP-DOWN CONTROLLER - Tape and Reel
MAX17018BATL/V+ 功能描述:DC/DC 开关控制器 Dual Step-Down Controller RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK